Production and Operations Management

Scheduling

Scheduling Definitions

- **Routing**. The operations to be performed, their sequence, the work centers, & the time standards
- Bottleneck: A resource whose capacity is less than the demand placed on it
- Due date. When the job is supposed to be finished
- Slack: The time that a job can be delayed & still finish by its due date
- Queue: A waiting line

Scheduling

 \succ

Manufacturing lead-time = Setup time, Run time (Wait

time + Process time), Move time, Queue time.

Cycle time – length of time from when material enters a

production facility until it exits.

Forward Scheduling and Backward Scheduling

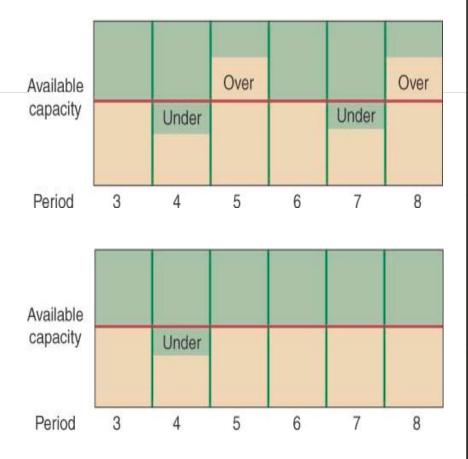
Finite Loading and Infinite Loading

Manufacturing Lead Time				
Division	Subdivision			
Set-up Time				
Run Time	Process Time			
	Wait Time			
Move Time				
Queue Time				

Other Scheduling Techniques

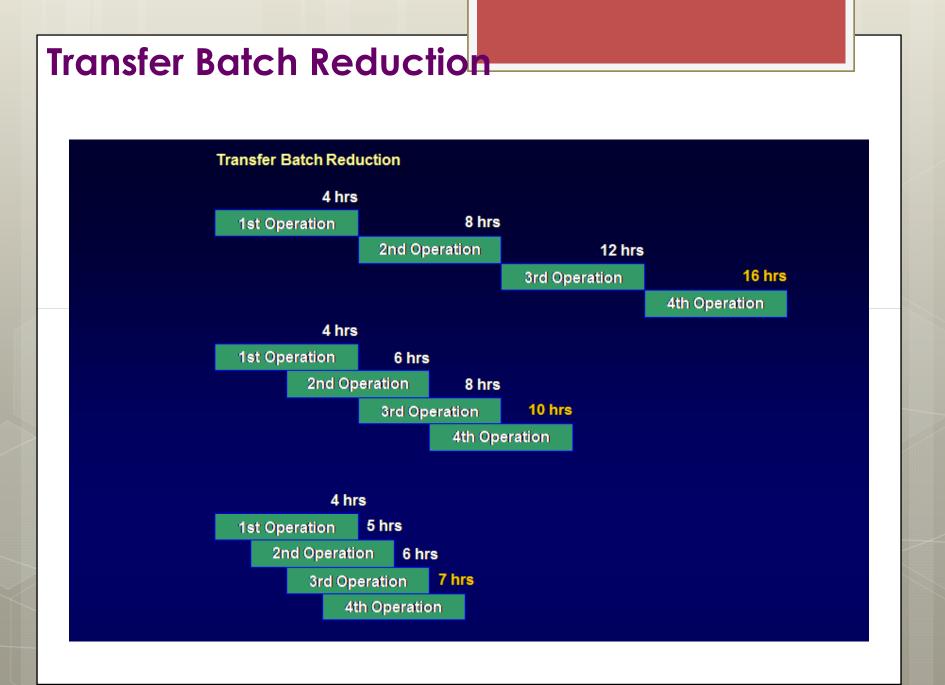
- ✓ Forward Scheduling starts processing when a job is received
- ✓ Backward Scheduling begin scheduling the job's last activity so that the job is finished on due date

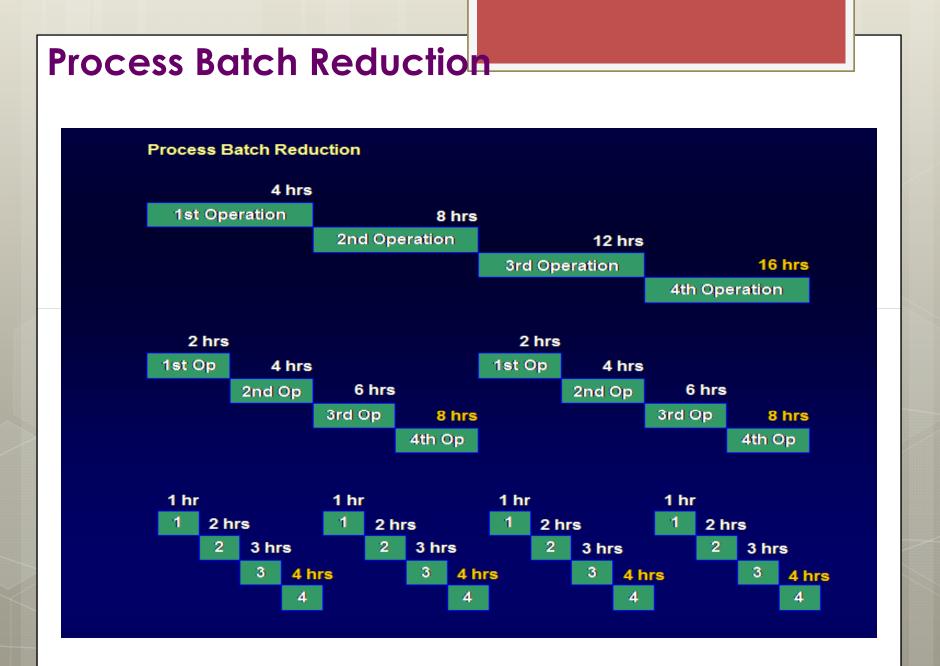
Order received									Due date
1	2	3	4	5	6	7	8	9	10
Materia			First	Second	Third	Final	_		
ordered			operation operation operation						
							E	Backward	l scheduling
			Material	s		First	Second	Third	Final
ordered				operation operation operation					


Scheduling Work - Work Loading

o Infinite loading.

 Ignores capacity constraints, but helps identify bottlenecks in
a proposed schedule to enable proactive management


• Finite loading.


Allows only as much work to be assigned as can be done with available capacity – but doesn't prepare for inevitable slippage

Scheduling Bottlenecks

- ✤ It is a facility, function, department, or resource whose capacity is equal to or less than the demand placed upon it.
- Throughput is the total volume of production passing through a facility. It is the Quantity of finished goods that can be sold.
- *Transfer Batch*: number of parts produced in a sequence
- Process Batch: Quantity produced at a resource before switching to another product

How to Sequence Jobs

Which of several jobs should be scheduled first?

• Techniques are available to do short-term planning of jobs based on available capacity & priorities

• Priority rules.

- Decision rules: to allocate the relative priority of jobs at a work center
 - *Local priority rules*: determines priority based only on jobs at that workstation
 - *Global priority rules*: also considers the remaining workstations a job must pass through

Commonly Used Priorities Rules

- > First come, first served (FCFS)
- > Last come, first served (LCFS)
- > Earliest due date (EDD)
- > Shortest processing time (SPT)
- > Longest processing time (LPT)
- > Critical ratio (CR):
 - (Time until due date)/(processing time)
- > Slack per remaining Operations (S/RO)
 - > Slack /(number of remaining operations)

How to Use Priority Rules

- 1. Decide which priority rule to use
- 2. List all jobs waiting to be processed with their job time
- 3. Using priority rule determine which job has highest priority then second, third and so on

Example Using SPT, EDD

Example Using SPT and EDD at Jill's Machine Shop-Work

	Job Time	Days to
Job Number	(includes Setup & Run Time)	Due Date
AZK111	3 days	3
BRU872	2 days	6
CUF373	5 days	8
DBR664	4 days	5
EZE101	1day	4
FID448	4 days	9

Example Using SPT, EDD

Example Using SPT and EDD at Jill's Machine Shop-Work Center 101

	Job Time	Days to	SPT Rule	EDD Rule
Job Number	(includes Setup & Run Time)	Due Date	Sequence	Sequence
AZK111	3 days	3	EZE101	AZK111
BRU872	2 days	6	BRU872	EZE101
CUF373	5 days	8	AZK111	DBR664
DBR664	4 days	5	DBR664	BRU872
EZE101	1day	4	FID448	CUF373
FID448	4 days	9	CUF373	FID448

Example Using Slack Ratio

Slack is the difference between the time remaining until a job's due date and the total shop time remaining, including that of the operation being scheduled.

 $S/RO = \frac{(Due \, date - Today's \, date) - Total \, shop \, time \, remaining}{Number \, of \, operations \, remaining}$

Critical ratio

$CR = \frac{Due \ Date \ -Today's \ Date}{Total \ Lead \ Time \ Remaining}$